

CSC efficiency & spatial resolution with GIF++ testbeam data (pre-approval)

Vladimir Palichik (Dubna-JINR)

GIF++ CSC working meeting May 30, 2017

GIF++ ME11 & ME21 Resolution test40, HVO, Aug2016 data

ME11

ME21

Spatial resolution calculation:

A single layer spatial resolution is defined as a residual between the measured strip coordinate and predicted track coordinate in the layer calculated from the track-segment fit.

GIF++ ME11 & ME21 Resolution test40, HVO, Aug2016 data

ME11

ME21

Spatial resolution calculation:

A single layer spatial resolution is defined as a residual between the measured strip coordinate and predicted track coordinate in the layer calculated from the track-segment fit. $_{3}$

GIF++ ME11 & ME21 Resolution test40, HVO, Aug2016 data

ME11

ME21

Spatial resolution calculation:

A single layer spatial resolution is defined as a residual between the measured strip coordinate and predicted track coordinate in the layer calculated from the track-segment fit.

CSC hit efficiency per Layer is calculated for events where track-segments were reconstructed and defined as ratio:

(Number of the spatial reconstructed hits in a Layer) / (Number of track-segments).

5

Backup Slides

Spatial resolution calculation:

- Only 6 & 5-point segments are considered;
- For each layer with hit a straight line fit is applied excluding the current layer and the residual (Δ) between the measured strip coordinate and the predicted track coordinate from fit is used for resolution calculation.

- hit used for fit
- hit excluded from fit
- × predicted track coordinate

Efficiency per layer (from segments):